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1 Eigenvector, eigenvalues and diagonalization

Steps for diagonalizing a n× n matrix A:

Step 1: Solve the equation det(A− λI) = 0.

Step 2: For each λ found, find a vector x satisfying Ax = λx. (Note that in some cases,
the number of linearly independent eigenvectors found can be more than 1.)

Step 3: Count the total number of linearly independent eigenvectors found for all eigen-
values:

Case 1: Total number of linearly independent eigenvectors found for all eigen-
values < n: The matrix is not diagonalizable.

Case 2: Total number of linearly independent eigenvectors found for all
eigenvalues= n: The matrix is diagonalizable: TakeQ = [v1,v2, ...,vn],
where v1,v2, ...,vn are linearly independent eigenvectors found. Then
D = Q−1AQ is a diagonal matrix. Note that for i = 1, 2, ..., n,
[D]ii = λi, where λi is the coresponding eigenvalue of vi.

Example 1.1. Find the eigenvalues and eigenvectors of the following matrices, and de-
termine whether it is diagonalizable. If yes, find the diagonal matrix formed.

i

(
1 3
3 1

)

ii

(
1 1
0 1

)

iii

(
2 0
5 8

)

iv

(
4 2
2 0

)

v

−1 −2 2
4 3 −4
0 −2 1


Besides, there are some interesting properties of diagonalization D = Q−1AQ:

i det(D) = det(Q−1AQ) = det(Q)−1det(A)det(Q) = det(A).

ii tr(A) = tr(Q): This is due to the property tr(CD) = tr(DC) for all n×n matrices
C,D.
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2 Normal curvature

Example 2.1. Show that the sum of the normal curvatures for any pair of orthogonal
directions at a point p ∈ S is a constant.

Proof. Let κ1, κ2 be the associated principal curvatures at p respectively.

Note that from lecture notes, for all v ∈ TpS we have κn(v) = κ1 cos
2 θ + κ2 sin

2 θ for
some θ ∈ [0, 2π).

Let v1 and v2 be any pair of orthogonal directions at the point p. Then without loss
of generality, we let

κ(v1) = κ1 cos
2 θ + κ2 sin

2 θ

κ(v2) = κ1 cos
2 (θ +

π

2
) + κ2 sin

2 (θ +
π

2
)

= κ1 sin
2 θ + κ2 cos

2 θ

Then we have

κ(v1) + κ(v2) = κ1 cos
2 θ + κ2 sin

2 θ + κ1 sin
2 θ + κ2 cos

2 θ

= κ1[cos
2 θ + sin2 θ] + κ2[cos

2 θ + sin2 θ]

= κ1 + κ2, which is a constant

3 Mean curvature

Definition 3.1 (Second fundamental form).

II =

(
e f
f g

)
=

(
⟨xuu,n⟩ ⟨xuv,n⟩
⟨xvu,n⟩ ⟨xvv,n⟩

)
= −

(
⟨xu,nu⟩ ⟨xu,nv⟩
⟨xv,nu⟩ ⟨xv,nv⟩

)
.

Definition 3.2 (Mean curvature). Let S be a regular surface and dnp be the differential
of Gauss map at p ∈ S. The mean curvature of S at p is

H = −1

2
tr(dnp) =

1

2
(κ1 + κ2) =

1

2
tr((II)(I−1)) =

1

2

(
gE − 2fF + eG

EG− F 2

)
.

where tr(dnp) is the trace of dnp and κ1, κ2 are the principal curvatures of S at p.

Example 3.1. Find the mean curvature of the following parametrized surface: x(u, v) =
(u, v, uv), u, v ∈ R.

2 Prepared by James Chau



Solution. Note that

Xu = (1, 0, v)

Xv = (0, 1, u)

Xu ×Xv =

∣∣∣∣∣∣
i j k
1 0 v
0 1 u

∣∣∣∣∣∣
= −vi− uj+ k

n =
Xu ×Xv

∥Xu ×Xv∥

=
(−v,−u, 1)√
1 + u2 + v2

Xuu = (0, 0, 0)

Xuv = (0, 0, 1)

Xvv = (0, 0, 0)

I =

(
⟨xu,xu⟩ ⟨xu,xv⟩
⟨xv,xu⟩ ⟨xv,xv⟩

)
=

(
1 + v2 uv
uv 1 + u2

)

II =

(
⟨xuu,n⟩ ⟨xuv,n⟩
⟨xvu,n⟩ ⟨xvv,n⟩

)
=

 0
1√

1 + u2 + v2
1√

1 + u2 + v2
0


(Of course we don’t want to compute nu and nv,right?)

So we have

H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2

(
−2fF

EG− F 2

)
= −

uv

(1+u2+v2)−
1
2

1 + u2 + v2

= − uv

(1 + u2 + v2)
3
2

Example 3.2 (Isothermal coordinate). Show that for a regular surface X(u, v) with

normal n =
Xu ×Xv

∥Xu ×Xv∥
, if I =

(
f 2 0
0 f 2

)
for some smooth function f , then

Xuu +Xvv = 2f 2Hn.

This coordinate system is called the isothermal coordinate.

Solution. The statement shows that Xuu + Xvv is parallel to 2f 2Hn. So apart from
checking that the coefficient of n is 2f 2H, we also need to check that Xuu + Xvv is
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independent of “influence” of other vectors that are linearly independent of n. To
begin with, let’s find a basis for R3 containing n:
Note that by regularity, we have Xu and Xv are linearly independent non-zero vectors,
hence Xu ×Xv ̸= 0.
Besides, by definition of n, we have n ⊥ Xu, Xv.
Hence {Xu, Xv,n} forms a basis for R3.
Let

Xuu +Xvv = αXu + βXv + ζn.

We need to show that

i ζ = 2f 2H.

ii α = β = 0.

So let’s show these two steps separately:

i Note that

H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2

(
gf 2 + ef 2

f 4

)
=

e+ g

2f 2

Taking inner product with n on both sides (so we can eliminate α, β by < Xu,n >=<
Xv,n >= 0), we have:

< Xuu +Xvv,n >= α < Xu,n > +β < Xv,n > +ζ < n,n >

< Xuu,n > + < Xvv,n > = ζ(1)(As n has norm 1.)

e+ g = ζ

ζ = 2f 2H

ii Taking inner product with Xu on both sides (so we can eliminate β by < Xu,n > 0),
we have:

< Xuu +Xvv, Xu > = α < Xu, Xu > +β < Xv, Xu > +ζ < n, Xu >

< Xuu, Xu > + < Xvv, Xu > = α(f 2) + β(0)

α =
1

f 2
[< Xuu, Xu > + < Xvv, Xu >]

So we need to show that

< Xuu, Xu > + < Xvv, Xu >= 0 :

Thinking process:
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( 1 ) How to make < Xuu, Xu >?
Note that < Xuu, Xu >=< (Xu)u, Xu >.
Recall we have the following technique : < x, y >′=< x′, y > + < x, y′ >.
In particular, we have < x, x >′= 2 < x, x′ >.

Then we have < Xuu, Xu >=< (Xu)u, Xu >=
1

2
∂u < Xu, Xu >=

1

2
∂u(f

2) =

ffu.

( 2 ) How to make < Xvv, Xu >?
Note that < Xvv, Xu >=< (Xv)v, Xu >.
Recall that < Xu, Xv >= 0 as given in the question.
Then note that

< Xu, Xv > = 0

∂v < Xu, Xv > = 0

< Xvv, Xu > + < Xuv, Xv > = 0

< Xvv, Xu > + < (Xv)u, Xv > = 0

< Xvv, Xu > +
1

2
∂u < Xv, Xv > = 0

< Xvv, Xu > +
1

2
∂u(f

2) = 0

< Xvv, Xu > +2ffu = 0

< Xvv, Xu > = −ffu

Hence we have

< Xuu, Xu > + < Xvv, Xu >= ffu − ffu = 0.

Similarly, for < Xuu, Xv > + < Xvv, Xv >, we have

< Xvv, Xv > =
1

2
∂v < Xv, Xv >

= ffv

and

∂u < Xu, Xv > = 0

< Xuu, Xv > + < Xu, Xvu > = 0

< Xuu, Xv > = −1

2
∂v < Xu, Xu >

= −ffv

Hence we have

< Xuu, Xv > + < Xvv, Xv >= ffv − ffv = 0.

Hence we have
Xuu +Xvv = 2f 2Hn.
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Remark. Therefore, an easy corollary is that the surface is minimal if and only if
Xuu +Xvv = 0 (This type of function is called harmonic, and Xuu +Xvv is called the
Laplacian of X, denoted by ∆X.)

Example 3.3. Using the result of the previous exercise, show that the helicoid:

X(u, v) = (a sinh v cosu, a sinh v sinu, au)

and the Enneper’s surface

X(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
are minimal surfaces.

Solution. Helicoid:

Xu = (−a sinh v sinu, a sinh v cosu, a)

Xv = (a cosh v cosu, a cosh v sinu, 0)

Xuu = (−a sinh v cosu,−a sinh v sinu, 0)

Xvv = (a sinh v cosu, a sinh v sinu, 0)

E =< Xu, Xu >

= a2 sinh2 v[sin2 u+ cos2 u] + a2

= a2 sinh2 v + a2

= a2[sinh2 v + 1]

= a2 cosh2 v (By cosh2 v − sinh2 v = 1 and hence sinh2 v + 1 = cosh2 v)

F =< Xu, Xv >

= −a2 sinh v cosh v sinu cosu+ a2 sinh v cosh v sinu cosu

= 0

G =< Xv, Xv >

= a2 cosh2 v[cos2 u+ sin2 u]

= a2 cosh2 v

So we have E = G = (a cosh v)2 and F = 0.
Also, we have Xuu +Xvv = 0.
Thereby, it is an isothermal coordinate and thereby H = 0.
So the surface is minimal.
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Enneper’s surface:

Xu =
(
1− u2 + v2, 2uv, 2u

)
Xv =

(
2uv, 1− v2 + u2,−2v

)
Xuu = (−2u, 2v, 2)

Xvv = (2u,−2v,−2)

E =< Xu, Xu >

= (1− u2 + v2)2 + 4u2v2 + 4u2

= 1 + u4 + v4 − 2u2 + 2v2 − 2u2v2 + 4u2v2 + 4u2

= u4 + v4 + 2u2 + 2v2 + 2u2v2 + 1

= (1 + u2 + v2)2

F =< Xu, Xv >

= 2uv − 2u3v + 2uv3 + 2uv − 2uv3 + 2u3v − 4uv

= 0

G =< Xv, Xv >

= 4u2v2 + (1− v2 + u2)2 + 4v2

= 4u2v2 + 1 + v4 + u4 − 2v2 + 2u2 − 2u2v2 + 4v2

= u4 + v4 + 2u2 + 2v2 + 2u2v2 + 1

= (1 + u2 + v2)2

Remark. We have

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc

(a+ b− c)2 = a2 + b2 + c2 + 2ab− 2ac− 2bc

Hence we have E = G = (1 + u2 + v2)2 and F = 0.
Also, we have Xuu +Xvv = 0.
Thereby, it is an isothermal coordinate and thereby H = 0.
So the surface is minimal.

Exercise 3.1. Prove that the surface defined by z = f(x, y) is a minimal surface if and
only if

(1 + f 2
x)fyy − 2fxfyfxy + (1 + f 2

y )fxx = 0.

Solution. Note that F (x, y) = (x, y, f(x, y)) is a parametrization of the surface.
Then we have
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Fx = (1, 0, fx)

Fy = (0, 1, fy)

I =

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)

Fx × Fy =

∣∣∣∣∣∣
i j k
1 0 fx
0 1 fy

∣∣∣∣∣∣
= (−fx,−fy, 1)

n =
Fx × Fy

∥Fx × Fy∥

=
(−fx,−fy, 1)√
1 + f 2

x + f 2
y

Fxx = (0, 0, fxx)

Fyy = (0, 0, fyy)

Fxy = (0, 0, fxy)

II =

(
⟨xuu,n⟩ ⟨xuv,n⟩
⟨xvu,n⟩ ⟨xvv,n⟩

)
=


fxx√

1 + f 2
x + f 2

y

fxy√
1 + f 2

x + f 2
y

fxy√
1 + f 2

x + f 2
y

fyy√
1 + f 2

x + f 2
y


(Of course we don’t want to compute nu and nv,right?)

Therefore, we have

H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2
× 1

(1 + f 2
x)(1 + f 2

y )− f 2
xf

2
y

×
fyy(1 + f 2

x)− 2fxyfxfy + fxx(1 + f 2
y )√

1 + f 2
x + f 2

y

Note that H = 0 if and only if the numerator= 0.
Therefore, we have H = 0 if and only if

fyy(1 + f 2
x)− 2fxyfxfy + fxx(1 + f 2

y ) = 0.

Exercise 3.2.

i Find the mean curvature of Helicoid: x(u, θ) = (au cos θ, au sin θ, bθ), u, θ ∈ R
where a, b > 0 are constants.

ii Given a regular surface S ⊂ R3 with orientation N. Let p ∈ S, show that the mean
curvature H at p ∈ S is given by

H =
1

π

∫ π

0

kn(θ) dθ,
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where kn(θ) is the normal curvature at p along the direction making an angle θ
with a fixed direction.

Solution.

i Note that

Xu = (a cos θ, a sin θ, 0)

Xθ = (−au sin θ, au cos θ, b)

Xu ×Xθ =

∣∣∣∣∣∣
i j k

a cos θ a sin θ 0
−au sin θ au cos θ b

∣∣∣∣∣∣
= ab sin θi− ab cos θj+ [a2u cos2 θ + a2u sin2 θ]k

= ab sin θi− ab cos θj+ a2uk

n =
Xu ×Xv

∥Xu ×Xv∥

=
(ab sin θ,−ab cos θ, a2u)√

a2b2 + a4u2

=
(b sin θ,−b cos θ, au)√

b2 + a2u2

Xuu = (0, 0, 0)

Xuθ = (−a sin θ, a cos θ, 0)

Xθ2 = (−au cos θ,−au sin θ, 0)

Xuθ = (−a sin θ, a cos θ, 0)

I =

(
a2 0
0 a2u2 + b2

)
II =

1√
b2 + a2u2

(
0 −ab sin2 θ − ab cos2 θ

−ab sin2 θ − ab cos2 θ −abu sin θ cos θ + abu sin θ cos θ

)
=

1√
b2 + a2u2

(
0 −ab

−ab 0

)
So we have

H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2

(
(0)E − 2f(0) + (0)G

EG

)
= 0

(Remark: Note that this surface does not have isothermal coordinate!)

ii Note that from lecture notes, we have

kn(θ) = k1 cos
2 θ + k2 sin

2 θ
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, where κ1, κ2 be the associated principal curvatures at p respectively. Then we have

1

π

∫ π

0

kn(θ) dθ =
1

π

∫ π

0

k1 cos
2 θ + k2 sin

2 θ dθ

=
1

π

∫ π

0

k1 ·
1 + cos 2θ

2
+ k2 ·

1− cos 2θ

2
dθ

=
1

2π

[
k1θ +

k1 sin 2θ

2
+ k2θ −

k2 sin 2θ

2

]π
0

=
k1π + k2π

2π

=
k1 + k2

2
= H

4 Appendix: Why do we need to care the mean curvature?

(Extracted from 2023-2024 MATH 4030 Lecture notes)
(Please be assured that this part will definitely not appear in the exam. It it just for
those who want to know why we need to care the mean curvature.)

Given X : U → M ⊂ R3 (M = X(U) is a regular parameterized surface.) Let D be
a bounded open domain in U ,
Consider X t : U → M given by

X t(p) := X(p) + th(p)n(p)

, where p ∈ D, n(p) is the normal of the surface at X(p) and h : D → R be a smooth
(i.e. infinitely many times differentable) function and for very small values of t.

th(p)n(p) is defined to be the normal variation of M . We want to find the “rate
of change”/derivative of the area of X(U)t, denote by At, under little normal vari-
ation from the original plane X(U) (i.e. t = 0).

The appearance of derivative
d

dt

∣∣∣∣
t=0

At makes only considering small values of t to make

sense.

Then we want to prove the following theorem:

Theorem 4.1. With the notation above, we have

d

dt

∣∣∣∣
t=0

Area(X t(D)) =

∫
D

−2hH
√

detg dudv.

Note that we have the following proposition:

Proposition 4.2. X t is a parametrization for very small values of t (Notation: |t| << 1.)
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Proof. {
X t

u = Xu + t(hn)u = Xu + thun+ thnu

X t
v = Xv + t(hn)v = Xv + thvn+ thnv

.

To show that a surface X t(u, v) is regular parameterized, we need to show that the
tangent vectors X t

u and X t
v are always linearly independent (equivalent to X t

u×X t
v ̸= 0):

X t
u ×X t

v = [Xu + thun+ thnu]× [Xv + thvn+ thnv]

= Xu ×Xv + t[hun×Xv + hvXu × n] + t2h[hun× nv + hvn× nu]

It is true that for a continuous function on closed and bounded set, maximum and
minimum value exists. (You can just treat it as fact first. You will learn how to prove it
in a mathematical analysis course.)
As ∥hun × Xv + hvXu × n∥ and ∥hun × nv + hvn × nu∥ are continuous (just believe it
first), they are bounded. Then we can choose very small value of t such that ∥Xu×Xv∥ >
∥t[hun×Xv + hvXu × n] + t2h[hun× nv + hvn× nu]∥, making X t

u ×X t
v ̸= 0.

(Obviously, ∥a∥ ≠ ∥b∥ implies a ̸= b.
In university courses, most of the time you just know the existence of a thing, but it is
very unlikely for you to find what the value is.)

Hence the tangent vectors X t
u and X t

v are always linearly independent and therefore
Mt = X t(u) is a regular surface for very small values of t.

To find the area of the surface, recall that

A =

∫
D

√
det(I) dudv

, where I =

(
E F
F G

)
=

(
< Xu, Xu > < Xu, Xv >
< Xv, Xu > < Xv, Xv >

)
is the first fundamental form at

X(p).

Also, denote II =

(
e f
f g

)
= −

(
< Xu,nu > < Xu,nv >
< Xv,nu > < Xv,nv >

)
is the second fundamental

form at X(p). Then denote I t =

(
Et F t

Gt H t

)
is the first fundamental form at X t(p).

Note that

F t =< X t
u, X

t
v >

=< Xu + thun+ thnu, Xv + thvn+ thnv >

=< Xu, Xv > +th[< Xu,nv > + < Xv,nu >] + t2(huhv + h2 < nu,nv >)

(As Xu, Xv ⊥ n, < Xu,n >=< Xv,n >= 0.)

(Also, as < n.n >≡ 1, we have 0 =< n.n >u= 2 < nu,n > and 0 =< n.n >v= 2 < nv,n >)

= F − 2thf + t2(huhv + h2 < nu,nv >)

∂tF
t|t=0 = [−2hf + 2t(huhv + h2 < nu,nv >)]t=0

= −2hf
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Similarly, we have

Et =< X t
u, X

t
u >

=< Xu + thun+ thnu, Xu + thun+ thnu >

=< Xu, Xu > +th[< Xu,nu > + < Xu,nu >] + t2(h2
u + h2 < nu,nu >)

= E − 2the+ t2(h2
u + h2 < nu,nu >)

∂tE
t|t=0 = [−2he+ 2t(h2

u + h2 < nu,nu >)]t=0

= −2he

and

Gt =< X t
v, X

t
v >

=< Xv + thvn+ thnv, Xv + thvn+ thnv >

=< Xv, Xv > +th[< Xu,nv > + < Xv,nv >] + t2(h2
v + h2 < nv,nv >)

= G− 2thg + t2(h2
u + h2 < nu,nu >)

∂tG
t|t=0 = [−2hg + 2t(h2

u + h2 < nu,nu >)]t=0

= −2hg

Therefore, we have

∂tI
t|t=0 = −2h

(
e f
f g

)
= −2hII

Recall the theorem that we want to prove:

d

dt
Area(X t(D)) =

∫
D

−2hH
√
detg dudv.

Note that the area At of X t(D) At =

∫
D

dAt. By fundamental theorem of calculus,

integration and differentiation sign can excahnge, so the theorem can be transformed to∫
D

−2hH
√

detg dudv =
d

dt

∣∣∣∣
t=0

∫
D

dAt =

∫
D

d

dt

∣∣∣∣
t=0

dAt.

So let’s go to find an expression of dAt. By comparing both sides, we want to prove that

d

dt

∣∣∣∣
t=0

dAt = −2hH
√

detg dudv

Also, we have

Proposition 4.3 (Jacabi formula). For a matrix function A(t) such that A(t) is invertible
for all small values of t, we have

∂

∂t
det(A) = det(A)tr(A−1dA

dt
)
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(Go to Wiki for the proof. It is computational exhaustive.)

Therefore, with I t is invertible, we have the derivative

d

dt

∣∣∣∣
t=0

dAt =
d

dt

∣∣∣∣
t=0

√
det(I t) dudv

=
1

2
{ 1√

det(I t)
[det(I t)]′}t=0 dudv

=
1

2
√

det(I)
det(I)tr(I−1 dI

dt

∣∣∣∣
t=0

) dudv (By Proposition 4.3)

=
1

2
√

det(I)
det(I)tr[I−1(−2hII)] dudv

= −h
√

det(I)tr[I−1(−II)] dudv

= −2hH
√

det(I) dudv (As tr(AB) = tr(BA), hence tr[I−1(II)] = tr[(II)I−1].

so tr[I−1(II)] = κ1 + κ2 = 2H.)

So we gave
d

dt
Area(X t(D)) =

∫
D

−2hH
√
detg dudv.
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